MEASUREMENT OF DISTRIBUTION BY THE METHOD
OF SMALL ANGLES FROM THE DIMENSIONS OF
PARTICLES SUSPENDED IN A FLOW
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A description is provided for the installation and we give the results from experiments on the
determination of the distribution function for water droplets atomized with a spray nozzle., The
resulting distributions (accurate to within the experimental error) are described by a normal-
logarithmic law. It is demonstrated that these results are in satisfactory agreement with those
derived by a capture method. '

Many industrial and research installations presently use suspensions of a given substance in a gas or
in some liquid; this is particularly characteristic of installations involving heat or mass transfer, as well
as various types of heating equipment. The effectiveness with which the processes take place within such
installations depends significantly on the dimensional distribution of the suspended particles [1-3]. The
determination of this parameter becomes a necessary condition for a quantitative analysis of such instal-
lations.

The method used to determine the dimensional distribution function for the suspended particles usually
include, in one form or another, an individual count, a laborious procedure that is associated with aero-
dynamic distortions [4].

The small-angle method is based on the fact that the suspended particles scatter light at small angles
to the initial direction; moreover, this procedure introduces no aerodynamic distortions, and the measure-
ments can be accomplished over several seconds, with completely satisfactory accuracy. The theory of
the method has been developed in [5-7]; the experimental aspects of the method have been tested on non-
moving clouds of water, and this has been described in [8, 9].

When using this method we assume that the scattering particles are spherical and transparent, with
the multiple scattering resulting from the limited concentration assumed to be negligibly small.

The angular distribution of the intensity I{) of the radiation scattered on the aerosols in this case can
be presented in the form

@

1©) = aly [ F (8, p)f () 0*dp, (1)
0
F(9,p) is a function which determines the radiation scattering within the angle 6by a particle of a given

dimension; f(p) is the density of the dimensional distribution function for the particles; p is a parameter
characterizing the relative particle dimension and is equal to p = 7D/A.

In studying the scattering of comparatively large particles (p > 1) within a small angle (§< 0.1) we
have

F(®, ) = — 693 (p0), 2
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Fig. 1. Diagram of the installation to investigate the di-
mensional spectrum of atomized particles.

TABLE 1. Basic Parameters for the Dimension- and inverting (1), we find
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where the kernel h = —27Y(x)[2xJy(x) — J;(x)] — 4, while S(8) = I(9) S _1pB2, 1(9), and I(B) are determined
experimentally; 8 is a rather large angle which still satisfies the condition of applicability for the small-
angle method,

In our case 8 was equal to 0.1-0.15 radians, depending on the speed of signal reduction.

The small-angle method is used to determine the density of the dimensional distribution function for
water particles produced by atomization in a spray nozzle. A diagram of the installation is shown in Fig.
1: 1) the He—Ne laser with a radiation wavelength of 0.6328 u; the polarization plane forms an angle of 45°
with the measurement plane; 2) a collimator with an angular magnification of 11x%; 3) diaphragms limiting the
beam; 4) a pneumatic spray nozzle with a nozzle diameter of 0.3 mm; 5) the spray-nozzle cone; 6) an ob-
jective with an effective aperture of 45 mm and a focal length of 400 mm; 7) a point diaphragm 0.2 mm in
diameter; 8) an interference light filter; 9) an FEU-51 photomultiplier; 10) a carriage moving along guide
rails 11, simultaneously rotating about the vertical axis of objective 6; 12) the drive of the movement mech-
anism; 13) a potentiometer connected to the moving carriage 10; 14) terminal switches to limit the move-
ment of the carriage,

The signal taken from the photomultiplier is applied to the dc amplifier 15 (type F-359) (the amplification
used here went as high as 10%, and the amplified signal is transmitted to a two-coordinate automatic re-
corder of the N-359 type (16). The moving carriage sets the angle of recorder drum rotation through po-
tentiometer 13 and the angle and the intensity of the scattered light are thus simultaneously recorded.

The operations were carried out in the following sequence: with the spray nozzle disconnected, we re-
corded the signal from the light scattered by the lens; the spray nozzle was then connected [sic] and we
recorded the light scattered from the lens and the nozzle cone. The magnitude of the light scattered by the
cone was found by substrating the first from the second.

Figure 2 shows a typical resultance whose ordinates are proportional to the radiation scattered by the
nozzle cone. In processing the experimental results in accordance with (3), in certain cases, we found a
"negative™ concentration in the region of large 8. Repeated processing of the curve did not markedly alter
the results. This phenomenon is apparently associated with the excessive simplification employed in the
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Fig. 2. Angular distribution of the intensity of the light scattered by
the nozzle cone (E in conventional units and 6 in radians).

Fig.3. Accumulated diagrams of the distribution functions derived
by the small-angle method (solid lines) and by the capture method
(dashed lines) for the following excess air pressures at the inlet to
the spray nozzle: 1) P = 0,8 atm; 2) 0.6 atm; 3) 0.4 atm.

selection of the function F (9, p) for large 6. With a reduction in the limit reckoning angle (in our case,
from 0.175 to 0.113 radians) the distribution functions are smoothed and the "negative" concentrations dis-
appear. When processing the signal in accordance with (4), we find that no "negative" concentrations are
observed.

The particle distribution in the nozzle cone was also studied by capturing particles on glass plates,
and these were subsequently microphotographed. A shutter is set up in front of the plates and the exposure
isof . the order of 1072 sec; the plates were covered with a mixture of transformer oil and gasoline, in a
ratio of 3:1; the resolution of the microscope was 0.8 um. The overall magnification was 700x%, and an
electrical slide rule was used to count the particles. '

The distribution functions derived with these two procedures are satisfactorily described by the nor-
mal logarithmic law

NQ)dD = — 1 exp| — 8D =18Dm] 410 p
lgol 2n ] 2(lgo)®

The accumulated diagrams of the distribution functions derived by the two methods for various air
pressures within the spray nozzle are shown in Fig. 3.

As we can see from the figure, the distributions are fairly close to each other; we can see the same
thing from the table, which gives their basic parameters.

The slightly higher values of Dy, derived by the capture method, can be explained by the relatively
limited capture efficiency for small particles, When P=0.2, the small-angle method produced a distribu~
tion substantially different from the normal logarithmic distribution observed for the same pressure in the
capture method. This divergence can be explained by the unstable operation of the spray nozzle at low pres-
sures.

These results thus indicate the possibility of reliably using the small-angle method to measure the
dimensional spectrum of particles moving in a stream.

NOTATION

I, is the intensity of the incident radiation;
I is the intensity of the scattered radiation;
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is the wavelength of the light used;

is the scattering angle;

is the maximum theoretical scattering angle;

is the particle diameter;

is the density of the dimensional particle dlstmbutlon function;
is a dimensionless parameter characterizing particle magnitude;
is a Bessel function of the first kind;

is a Bessel function of the second kind;

is the mean geometric particle diameter;

is the standard geometric deviation;

is the air pressure in the spray nozzle;

is the Kramp function of D.
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